Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.202
Filtrar
1.
Science ; 384(6691): eabo7027, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574142

RESUMO

Macrophages are functionally heterogeneous cells essential for apoptotic cell clearance. Apoptotic cells are defined by homogeneous characteristics, ignoring their original cell lineage identity. We found that in an interleukin-4 (IL-4)-enriched environment, the sensing of apoptotic neutrophils by macrophages triggered their tissue remodeling signature. Engulfment of apoptotic hepatocytes promoted a tolerogenic phenotype, whereas phagocytosis of T cells had little effect on IL-4-induced gene expression. In a mouse model of parasite-induced pathology, the transfer of macrophages conditioned with IL-4 and apoptotic neutrophils promoted parasitic egg clearance. Knockout of phagocytic receptors required for the uptake of apoptotic neutrophils and partially T cells, but not hepatocytes, exacerbated helminth infection. These findings suggest that the identity of apoptotic cells may contribute to the development of distinct IL-4-driven immune programs in macrophages.


Assuntos
Apoptose , Interleucina-4 , Macrófagos , Fagocitose , Esquistossomose mansoni , Animais , Camundongos , Apoptose/imunologia , Interleucina-4/genética , Interleucina-4/metabolismo , Macrófagos/imunologia , Camundongos Knockout , Neutrófilos/imunologia , Fagocitose/imunologia , Hepatócitos/imunologia , Esquistossomose mansoni/genética , Esquistossomose mansoni/imunologia
2.
Theranostics ; 14(6): 2589-2604, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646647

RESUMO

Background: The mechanisms underlying the increased mortality of secondary infections during the immunosuppressive phase of sepsis remain elusive. Objectives: We sought to investigate the role of Siglec-F+ neutrophils on splenic T lymphocytes in the immunosuppressed phase of sepsis and on secondary infection in PICS mice, and to elucidate the underlying mechanisms. Methods: We established a mouse model of sepsis-induced immunosuppression followed by secondary infection with LPS or E. coli. The main manifestation of immunosuppression is the functional exhaustion of splenic T lymphocytes. Treg depletion reagent Anti-IL-2, IL-10 blocker Anti-IL-10R, macrophage depletion reagent Liposomes, neutrophil depletion reagent Anti-Ly6G, neutrophil migration inhibitor SB225002, Siglec-F depletion reagent Anti-Siglec-F are all used on PICS mice. The function of neutrophil subsets was investigated by adoptive transplantation and the experiments in vitro. Results: Compared to other organs, we observed a significant reduction in pro-inflammatory cytokines in the spleen, accompanied by a marked increase in IL-10 production, primarily by infiltrating neutrophils. These infiltrating neutrophils in the spleen during the immunosuppressive phase of sepsis undergo phenotypic change in the local microenvironment, exhibiting high expression of neutrophil biomarkers such as Siglec-F, Ly6G, and Siglec-E. Depletion of neutrophils or specifically targeting Siglec-F leads to enhance the function of T lymphocytes and a notable improvement in the survival of mice with secondary infections. Conclusions: We identified Siglec-F+ neutrophils as the primary producers of IL-10, which significantly contributed to T lymphocyte suppression represents a novel finding with potential therapeutic implications.


Assuntos
Interleucina-10 , Neutrófilos , Sepse , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Baço , Animais , Baço/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Camundongos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Sepse/imunologia , Interleucina-10/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Terapia de Imunossupressão , Infecções por Escherichia coli/imunologia , Masculino , Citocinas/metabolismo , Tolerância Imunológica , Linfócitos T Reguladores/imunologia
3.
Acta Neuropathol ; 147(1): 76, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658413

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the CNS characterized by the production of disease-specific autoantibodies against aquaporin-4 (AQP4) water channels. Animal model studies suggest that anti-AQP4 antibodies cause a loss of AQP4-expressing astrocytes, primarily via complement-dependent cytotoxicity. Nonetheless, several aspects of the disease remain unclear, including: how anti-AQP4 antibodies cross the blood-brain barrier from the periphery to the CNS; how NMOSD expands into longitudinally extensive transverse myelitis or optic neuritis; how multiphasic courses occur; and how to prevent attacks without depleting circulating anti-AQP4 antibodies, especially when employing B-cell-depleting therapies. To address these knowledge gaps, we conducted a comprehensive 'stage-dependent' investigation of immune cell elements in situ in human NMOSD lesions, based on neuropathological techniques for autopsied/biopsied CNS materials. The present study provided three major findings. First, activated or netting neutrophils and melanoma cell adhesion molecule-positive (MCAM+) helper T (TH) 17/cytotoxic T (TC) 17 cells are prominent, and the numbers of these correlate with the size of NMOSD lesions in the initial or early-active stages. Second, forkhead box P3-positive (FOXP3+) regulatory T (Treg) cells are recruited to NMOSD lesions during the initial, early-active or late-active stages, suggesting rapid suppression of proinflammatory autoimmune events in the active stages of NMOSD. Third, compartmentalized resident memory immune cells, including CD103+ tissue-resident memory T (TRM) cells with long-lasting inflammatory potential, are detected under "standby" conditions in all stages. Furthermore, CD103+ TRM cells express high levels of granzyme B/perforin-1 in the initial or early-active stages of NMOSD in situ. We infer that stage-dependent compartmentalized immune traits orchestrate the pathology of anti-AQP4 antibody-guided NMOSD in situ. Our work further suggests that targeting activated/netting neutrophils, MCAM+ TH17/TC17 cells, and CD103+ TRM cells, as well as promoting the expansion of FOXP3+ Treg cells, may be effective in treating and preventing relapses of NMOSD.


Assuntos
Aquaporina 4 , Autoanticorpos , Neuromielite Óptica , Neutrófilos , Neuromielite Óptica/imunologia , Neuromielite Óptica/patologia , Aquaporina 4/imunologia , Humanos , Neutrófilos/imunologia , Neutrófilos/patologia , Feminino , Autoanticorpos/imunologia , Masculino , Pessoa de Meia-Idade , Memória Imunológica , Adulto , Idoso , Células Th17/imunologia , Células Th17/patologia
4.
J Immunotoxicol ; 21(1): 2345152, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38659406

RESUMO

The recent global resurgence of severe infections caused by the Group A streptococcus (GAS) pathogen, Streptococcus pyogenes, has focused attention on this microbial pathogen, which produces an array of virulence factors, such as the pore-forming toxin, streptolysin O (SOT). Importantly, the interactions of SOT with human neutrophils (PMN), are not well understood. The current study was designed to investigate the effects of pretreatment of isolated human PMN with purified SOT on several pro-inflammatory activities, including generation of reactive oxygen species (ROS), degranulation (elastase release), influx of extracellular calcium (Ca2+) and release of extracellular DNA (NETosis), using chemiluminescence, spectrophotometric and fluorimetric procedures, respectively. Exposure of PMN to SOT alone caused modest production of ROS and elastase release, while pretreatment with the toxin caused significant augmentation of chemoattractant (fMLP)-activated ROS generation and release of elastase by activated PMN. These effects of treatment of PMN with SOT were associated with both a marked and sustained elevation of cytosolic Ca2+concentrations and significant increases in the concentrations of extracellular DNA, indicative of NETosis. The current study has identified a potential role for SOT in augmenting the Ca2+-dependent pro-inflammatory interactions of PMN, which, if operative in a clinical setting, may contribute to hyper-activation of PMN and GAS-mediated tissue injury.


Assuntos
Proteínas de Bactérias , Cálcio , Armadilhas Extracelulares , Neutrófilos , Elastase Pancreática , Espécies Reativas de Oxigênio , Streptococcus pyogenes , Estreptolisinas , Humanos , Estreptolisinas/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Streptococcus pyogenes/imunologia , Proteínas de Bactérias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Elastase Pancreática/metabolismo , Células Cultivadas , Ativação de Neutrófilo/efeitos dos fármacos , Infecções Estreptocócicas/imunologia , Degranulação Celular/efeitos dos fármacos , Inflamação/imunologia
5.
Front Immunol ; 15: 1365591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650947

RESUMO

Background: systemic inflammation disorders were observed in chronic kidney disease (CKD). Whether the systemic inflammatory indicators could be optimal predictors for the survival of CKD remains less studied. Methods: In this study, participants were selected from the datasets of the National Health and Nutrition Examination Survey (NHANES) between 1999 to 2018 years. Four systemic inflammatory indicators were evaluated by the peripheral blood tests including systemic immune-inflammation index (SII, platelet*neutrophil/lymphocyte), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR). Kaplan-Meier curves, restricted cubic spline (RCS), and Cox regression analysis were used to evaluate the association between the inflammatory index with the all-cause mortality of CKD. Receiver operating characteristic (ROC) and concordance index (C-index) were used to determine the predictive accuracy of varied systemic inflammatory indicators. Sensitive analyses were conducted to validate the robustness of the main findings. Results: A total of 6,880 participants were included in this study. The mean age was 67.03 years old. Among the study population, the mean levels of systemic inflammatory indicators were 588.35 in SII, 2.45 in NLR, 133.85 in PLR, and 3.76 in LMR, respectively. The systemic inflammatory indicators of SII, NLR, and PLR were all significantly positively associated with the all-cause mortality of CKD patients, whereas the high value of LMR played a protectable role in CKD patients. NLR and LMR were the leading predictors in the survival of CKD patients [Hazard ratio (HR) =1.21, 95% confidence interval (CI): 1.07-1.36, p = 0.003 (3rd quartile), HR = 1.52, 95%CI: 1.35-1.72, p<0.001 (4th quartile) in NLR, and HR = 0.83, 95%CI: 0.75-0.92, p<0.001 (2nd quartile), HR = 0.73, 95%CI: 0.65-0.82, p<0.001 (3rd quartile), and = 0.74, 95%CI: 0.65-0.83, p<0.001 (4th quartile) in LMR], with a C-index of 0.612 and 0.624, respectively. The RCS curves showed non-linearity between systemic inflammatory indicators and all-cause mortality risk of the CKD population. Conclusion: Our study highlights that systemic inflammatory indicators are important for predicting the survival of the U.S. population with CKD. The systemic inflammatory indicators would add additional clinical value to the health care of the CKD population.


Assuntos
Inflamação , Inquéritos Nutricionais , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/mortalidade , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/imunologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Prospectivos , Inflamação/sangue , Inflamação/imunologia , Neutrófilos/imunologia , Biomarcadores/sangue , Linfócitos/imunologia , Prognóstico , Monócitos/imunologia
6.
Sci Rep ; 14(1): 9382, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654064

RESUMO

Acute Pancreatitis (AP) is associated with high mortality and current treatment options are limited to supportive care. We found that blockade of activin A (activin) in mice improves outcomes in two murine models of AP. To test the hypothesis that activin is produced early in response to pancreatitis and is maintained throughout disease progression to stimulate immune cells, we first performed digital spatial profiling (DSP) of human chronic pancreatitis (CP) patient tissue. Then, transwell migration assays using RAW264.7 mouse macrophages and qPCR analysis of "neutrophil-like" HL-60 cells were used for functional correlation. Immunofluorescence and western blots on cerulein-induced pancreatitis samples from pancreatic acinar cell-specific Kras knock-in (Ptf1aCreER™; LSL-KrasG12D) and functional WT Ptf1aCreER™ mouse lines mimicking AP and CP to allow for in vivo confirmation. Our data suggest activin promotes neutrophil and macrophage activation both in situ and in vitro, while pancreatic activin production is increased as early as 1 h in response to pancreatitis and is maintained throughout CP in vivo. Taken together, activin is produced early in response to pancreatitis and is maintained throughout disease progression to promote neutrophil and macrophage activation.


Assuntos
Ativinas , Movimento Celular , Macrófagos , Ativação de Neutrófilo , Pancreatite , Transdução de Sinais , Animais , Ativinas/metabolismo , Camundongos , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Pancreatite/metabolismo , Pancreatite/patologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Modelos Animais de Doenças , Células RAW 264.7 , Ativação de Macrófagos , Células HL-60 , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Masculino
7.
J Innate Immun ; 16(1): 216-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38461810

RESUMO

INTRODUCTION: Toll-like receptors play crucial roles in the sepsis-induced systemic inflammatory response. Septic shock mortality correlates with overexpression of neutrophilic TLR2 and TLR9, while the role of TLR4 overexpression remains a debate. In addition, TLRs are involved in the pathogenesis of viral infections such as COVID-19, where the single-stranded RNA of SARS-CoV-2 is recognized by TLR7 and TLR8, and the spike protein activates TLR4. METHODS: In this study, we conducted a comprehensive analysis of TLRs 1-10 expressions in white blood cells from 71 patients with bacterial and viral infections. Patients were divided into 4 groups based on disease type and severity (sepsis, septic shock, moderate, and severe COVID-19) and compared to 7 healthy volunteers. RESULTS: We observed a significant reduction in the expression of TLR4 and its co-receptor CD14 in septic shock neutrophils compared to the control group (p < 0.001). Severe COVID-19 patients exhibited a significant increase in TLR3 and TLR7 levels in neutrophils compared to controls (p < 0.05). Septic shock patients also showed a similar increase in TLR7 in neutrophils along with elevated intermediate monocytes (CD14+CD16+) compared to the control group (p < 0.005 and p < 0.001, respectively). However, TLR expression remained unchanged in lymphocytes. CONCLUSION: This study provides further insights into the mechanisms of TLR activation in various infectious conditions. Additional analysis is needed to assess their correlation with patient outcome and to evaluate the impact of TLR-pathway modulation during septic shock and severe COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Receptor 10 Toll-Like , Humanos , COVID-19/imunologia , COVID-19/sangue , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Idoso , Adulto , Receptores Toll-Like/metabolismo , Choque Séptico/imunologia , Choque Séptico/sangue , Neutrófilos/imunologia , Infecções Bacterianas/imunologia , Leucócitos/imunologia , Leucócitos/metabolismo , Receptor 1 Toll-Like/metabolismo , Receptor 1 Toll-Like/genética , Sepse/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética
8.
Cancer Immunol Res ; 12(4): 413-426, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38349973

RESUMO

Neutrophils are the most abundant leukocytes in human blood and play a primary role in resistance against invading microorganisms and in the acute inflammatory response. However, their role in colitis and colitis-associated colorectal cancer is still under debate. This study aims to dissect the role of neutrophils in these pathologic contexts by using a rigorous genetic approach. Neutrophil-deficient mice (Csf3r-/- mice) were used in classic models of colitis and colitis-associated colorectal cancer and the role of neutrophils was assessed by histologic, cellular, and molecular analyses coupled with adoptive cell transfer. We also performed correlative analyses using human datasets. Csf3r-/- mice showed increased susceptibility to colitis and colitis-associated colorectal cancer compared with control Csf3r+/+ mice and adoptive transfer of neutrophils in Csf3r-/- mice reverted the phenotype. In colitis, Csf3r-/- mice showed increased bacterial invasion and a reduced number of healing ulcers in the colon, indicating a compromised regenerative capacity of epithelial cells. Neutrophils were essential for γδ T-cell polarization and IL22 production. In patients with ulcerative colitis, expression of CSF3R was positively correlated with IL22 and IL23 expression. Moreover, gene signatures associated with epithelial-cell development, proliferation, and antimicrobial response were enriched in CSF3Rhigh patients. Our data support a model where neutrophils mediate protection against intestinal inflammation and colitis-associated colorectal cancer by controlling the intestinal microbiota and driving the activation of an IL22-dependent tissue repair pathway.


Assuntos
Colite Ulcerativa , Neoplasias Associadas a Colite , Neutrófilos , Animais , Humanos , Camundongos , Carcinogênese , Colite/patologia , Colite Ulcerativa/metabolismo , Neoplasias Associadas a Colite/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo
9.
J Innate Immun ; 16(1): 80-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38224674

RESUMO

BACKGROUND: Neutrophils are the first line of defense against pathogens. They are divided into multiple subpopulations during development and kill pathogens through various mechanisms. Neutrophils are considered one of the markers of severe COVID-19. SUMMARY: In-depth research has revealed that neutrophil subpopulations have multiple complex functions. Different subsets of neutrophils play an important role in the progression of COVID-19. KEY MESSAGES: In this review, we provide a detailed overview of the developmental processes of neutrophils at different stages and their recruitment and activation after SARS-CoV-2 infection, aiming to elucidate the changes in neutrophil subpopulations, characteristics, and functions after infection and provide a reference for mechanistic research on neutrophil subpopulations in the context of SARS-CoV-2 infection. In addition, we have also summarized research progress on potential targeted drugs for neutrophil immunotherapy, hoping to provide information that aids the development of therapeutic drugs for the clinical treatment of critically ill COVID-19 patients.


Assuntos
COVID-19 , Neutrófilos , SARS-CoV-2 , Humanos , COVID-19/imunologia , Neutrófilos/imunologia , SARS-CoV-2/imunologia , Imunoterapia/métodos , Ativação de Neutrófilo , Animais , Infiltração de Neutrófilos/imunologia
10.
Science ; 383(6679): eadf6493, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207030

RESUMO

Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1+ state. Reprogrammed dcTRAIL-R1+ neutrophils predominantly localize to a glycolytic and hypoxic niche at the tumor core and exert pro-angiogenic function that favors tumor growth. We found similar trajectories in neutrophils across multiple tumor types and in humans, suggesting that targeting this program may provide a means of enhancing certain cancer immunotherapies.


Assuntos
Reprogramação Celular , Neoplasias , Neovascularização Patológica , Neutrófilos , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neutrófilos/imunologia , Proteômica , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Epigênese Genética , Hipóxia , Transcrição Gênica
11.
Immunohorizons ; 8(1): 122-135, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38289252

RESUMO

Klebsiella pneumoniae (KP) is an extracellular Gram-negative bacterium that causes infections in the lower respiratory and urinary tracts and the bloodstream. STAT1 is a master transcription factor that acts to maintain T cell quiescence under homeostatic conditions. Although STAT1 helps defend against systemic spread of acute KP intrapulmonary infection, whether STAT1 regulation of T cell homeostasis impacts pulmonary host defense during acute bacterial infection and injury is less clear. Using a clinical KP respiratory isolate and a pneumonia mouse model, we found that STAT1 deficiency led to an early neutrophil-dominant transcriptional profile and neutrophil recruitment in the lung preceding widespread bacterial dissemination and lung injury development. Yet, myeloid cell STAT1 was dispensable for control of KP proliferation and dissemination, because myeloid cell-specific STAT1-deficient (LysMCre/WT;Stat1fl/fl) mice showed bacterial burden in the lung, liver, and kidney similar to that of their wild-type littermates. Surprisingly, IL-17-producing CD4+ T cells infiltrated Stat1-/- murine lungs early during KP infection. The increase in Th17 cells in the lung was not due to preexisting immunity against KP and was consistent with circulating rather than tissue-resident CD4+ T cells. However, blocking global IL-17 signaling with anti-IL-17RC administration led to increased proliferation and dissemination of KP, suggesting that IL-17 provided by other innate immune cells is essential in defense against KP. Contrastingly, depletion of CD4+ T cells reduced Stat1-/- murine lung bacterial burden, indicating that early CD4+ T cell activation in the setting of global STAT1 deficiency is pathogenic. Altogether, our findings suggest that STAT1 employs myeloid cell-extrinsic mechanisms to regulate neutrophil responses and provides protection against invasive KP by restricting nonspecific CD4+ T cell activation and immunopathology in the lung.


Assuntos
Infecções por Klebsiella , Neutrófilos , Fator de Transcrição STAT1 , Animais , Camundongos , Interleucina-17 , Klebsiella pneumoniae , Pulmão/microbiologia , Células Mieloides , Neutrófilos/imunologia , Fator de Transcrição STAT1/metabolismo , Infecções por Klebsiella/imunologia
12.
Sci Adv ; 9(36): eadf9706, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37672585

RESUMO

Trained immunity is a long-term memory of innate immune cells, generating an improved response upon reinfection. Shigella is an important human pathogen and inflammatory paradigm for which there is no effective vaccine. Using zebrafish larvae, we demonstrate that after Shigella training, neutrophils are more efficient at bacterial clearance. We observe that Shigella-induced protection is nonspecific and has differences with training by BCG and ß-glucan. Analysis of histone ChIP-seq on trained neutrophils revealed that Shigella training deposits the active H3K4me3 mark on promoter regions of 1612 genes, dramatically changing the epigenetic landscape of neutrophils toward enhanced microbial recognition and mitochondrial ROS production. Last, we demonstrate that mitochondrial ROS plays a key role in enhanced antimicrobial activity of trained neutrophils. It is envisioned that signals and mechanisms we discover here can be used in other vertebrates, including humans, to suggest new therapeutic strategies involving neutrophils to control bacterial infection.


Assuntos
Infecções por Enterobacteriaceae , Epigênese Genética , Mycobacterium bovis , Neutrófilos , Imunidade Treinada , beta-Glucanas , Infecções por Enterobacteriaceae/imunologia , Animais , Peixe-Zebra , Larva , Neutrófilos/imunologia , Neutrófilos/metabolismo , Shigella flexneri/fisiologia , Mycobacterium bovis/imunologia , beta-Glucanas/administração & dosagem , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Nature ; 621(7980): 830-839, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674079

RESUMO

The immune-suppressive tumour microenvironment represents a major obstacle to effective immunotherapy1,2. Pathologically activated neutrophils, also known as polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), are a critical component of the tumour microenvironment and have crucial roles in tumour progression and therapy resistance2-4. Identification of the key molecules on PMN-MDSCs is required to selectively target these cells for tumour treatment. Here, we performed an in vivo CRISPR-Cas9 screen in a tumour mouse model and identified CD300ld as a top candidate of tumour-favouring receptors. CD300ld is specifically expressed in normal neutrophils and is upregulated in PMN-MDSCs upon tumour-bearing. CD300ld knockout inhibits the development of multiple tumour types in a PMN-MDSC-dependent manner. CD300ld is required for the recruitment of PMN-MDSCs into tumours and their function to suppress T cell activation. CD300ld acts via the STAT3-S100A8/A9 axis, and knockout of Cd300ld reverses the tumour immune-suppressive microenvironment. CD300ld is upregulated in human cancers and shows an unfavourable correlation with patient survival. Blocking CD300ld activity inhibits tumour development and has synergistic effects with anti-PD1. Our study identifies CD300ld as a critical immune suppressor present on PMN-MDSCs, being required for tumour immune resistance and providing a potential target for cancer immunotherapy.


Assuntos
Células Supressoras Mieloides , Neoplasias , Neutrófilos , Receptores Imunológicos , Animais , Humanos , Camundongos , Sistemas CRISPR-Cas , Progressão da Doença , Edição de Genes , Imunoterapia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Neoplasias/imunologia , Neoplasias/patologia , Neutrófilos/imunologia , Neutrófilos/patologia , Receptores Imunológicos/imunologia , Análise de Sobrevida , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/patologia , Microambiente Tumoral , Ativação Linfocitária
14.
Clin Transl Med ; 13(7): e1340, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37491740

RESUMO

BACKGROUND: The cellular dynamics in the tumour microenvironment (TME) along with non-small cell lung cancer (NSCLC) progression remain unclear. METHODS: Multiplex immunofluorescence test detecting 10 immune-related markers on 553 primary tumour (PT) samples of NSCLC was conducted and spatial information in TME was assessed by the StarDist depth learning model. The single-cell transcriptomic atlas of PT (n = 4) and paired tumour-draining lymph nodes (TDLNs) (n = 5 for tumour-invaded, n = 3 for tumour-free) microenvironment was profiled. Various bioinformatics analyses based on Gene Expression Omnibus, TCGA and Array-Express databases were also used to validate the discoveries. RESULTS: Spatial distances of CD4+ T cells-CD38+ T cells, CD4+ T cells-neutrophils and CD38+ T cells-neutrophils prolonged and they were replaced by CD163+ macrophages in PT along with tumour progression. Neutrophils showed unique stage and location-dependent prognostic effects. A high abundance of stromal neutrophils improved disease-free survival in the early-stage, whereas high intratumoural neutrophil infiltrates predicted poor prognosis in the mid-to-late-stage. Significant molecular and functional reprogramming in PT and TDLN microenvironments was observed. Diverse interaction networks mediated by neutrophils were found between positive and negative TDLNs. Five phenotypically and functionally heterogeneous subtypes of tumour-associated neutrophil (TAN) were further identified by pseudotime analysis, including TAN-0 with antigen-presenting function, TAN-1 with strong expression of interferon (IFN)-stimulated genes, the pro-tumour TAN-2 subcluster, the classical subset (TAN-3) and the pro-inflammatory subtype (TAN-4). Loss of IFN-stimulated signature and growing angiogenesis activity were discovered along the transitional trajectory. Eventually, a robust six neutrophil differentiation relevant genes-based model was established, showing that low-risk patients had longer overall survival time and may respond better to immunotherapy. CONCLUSIONS: The cellular composition, spatial location, molecular and functional changes in PT and TDLN microenvironments along with NSCLC progression were deciphered, highlighting the immunoregulatory roles and evolutionary heterogeneity of TANs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neutrófilos , Microambiente Tumoral , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Prognóstico , Conjuntos de Dados como Assunto , Algoritmos , Carcinoma Pulmonar de Células não Pequenas/imunologia
15.
Arterioscler Thromb Vasc Biol ; 43(9): 1700-1712, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409530

RESUMO

BACKGROUND: Platelets and neutrophils are the first blood cells accumulating at sites of arterial thrombus formation, and both cell types contribute to the pathology of thrombotic events. We aimed to identify key interaction mechanisms between these cells using microfluidic approaches. METHODS: Whole-blood perfusion was performed over a collagen surface at arterial shear rate. Platelet and leukocyte (in majority neutrophil) activation were microscopically visualized using fluorescent markers. The contributions of platelet-adhesive receptors (integrin, P-selectin, CD40L) and chemokines were studied by using inhibitors or antibodies and using blood from patients with GT (Glanzmann thrombasthenia) lacking platelet-expressed αIIbß3. RESULTS: We observed (1) an unknown role of activated platelet integrin αIIbß3 preventing leukocyte adhesion, which was overcome by short-term flow disturbance provoking massive adhesion; (2) that platelet-expressed CD40L controls the crawling pattern and thrombus fidelity of the cells on a thrombus; (3) that continued secretion of platelet substances promotes activation of identified neutrophils, as assessed by (fMLP [N-formylmethionyl-leucyl-phenylalanine, a potent chemotactic agent and leukocyte activator] induced) [Ca2+]i rises and antigen expression; (4) and that platelet-released chemokines activate the adhered cells in the order of CXCL7>CCL5>CXCL4. Furthermore, postsilencing of the platelets in a thrombus suppressed the leukocyte activation. However, the leukocytes on thrombi did no more than limitedly form neutrophil extracellular traps, unless stimulated with phorbol ester or lipopolysaccharide. CONCLUSIONS: Together, these findings reveal a multifaceted regulation of adhesion and activation of neutrophils by platelets in a thrombus, with a balanced role of several platelet-adhesive receptors and a promoting role of platelet-released substances. This multivalent nature of neutrophil-thrombus interactions offers novel prospects for pharmacological intervention.


Assuntos
Artérias , Plaquetas , Quimiocinas , Ativação de Neutrófilo , Neutrófilos , Trombose , Plaquetas/imunologia , Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Quimiocinas/metabolismo , Trombose/imunologia , Ligante de CD40 , Neutrófilos/imunologia , Neutrófilos/metabolismo , Adesão Celular , Humanos
16.
Kidney Int ; 104(2): 236-238, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37479384

RESUMO

Like most epithelial organs, the bladder and kidney can be directly accessed by bacteria evolved for invasion. Epithelia and immune cells attempt to stymie this infection with biophysical and chemical mechanisms. Goldspink et al. connected the Na+ gradient in the kidney medulla with an immune defense mounted by dead cells (namely, the explosive death of neutrophils and macrophages), resulting in extracellular DNA traps. The pathway from Na+ concentration to immune death is depicted.


Assuntos
Armadilhas Extracelulares , Imunidade Inata , Macrófagos , Neutrófilos , Sistema Urinário , Sistema Urinário/imunologia , Neutrófilos/imunologia , Macrófagos/imunologia , Rim , Sódio , Morte Celular , Proteína-Arginina Desiminase do Tipo 4 , Humanos , Animais , Camundongos , Infecções Urinárias/imunologia , Infecções Bacterianas/imunologia
17.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175470

RESUMO

Newborns and especially preterm infants are much more susceptible to infections than adults. Due to immature adaptive immunity, especially innate immune cells play an important role in a newborn's infection defense. Neonatal neutrophils exhibit profound differences in their functionality compared to neutrophils of adults. In particular, neonates possess a relevant population of suppressive neutrophils, which not only inhibit but also specifically modulate the function of T-cells. In this study, we investigated whether neonatal neutrophils are already involved in T-cell development in the thymus. For this purpose, we used a newly developed model of antibody-mediated immune cell depletion in which we administered a depleting antibody to pregnant and then lactating dams. Using this method, we were able to sufficiently deplete Ly6G-positive neutrophils in offspring. We demonstrated that the depletion of neutrophils in newborn mice resulted in altered peripheral T-cell homeostasis with a decreased CD4+/CD8+ T-cell ratio and decreased expression of CD62L. Neutrophil depletion even affected T-cell development in the thymus, with increased double positive thymocytes and a decreased CD4+/CD8+ single positive thymocyte ratio. Altogether, we demonstrated a previously unknown mechanism mediating neutrophils' immunomodulatory effects in newborns.


Assuntos
Imunidade Adaptativa , Neutrófilos , Linfócitos T , Timo , Animais , Feminino , Humanos , Recém-Nascido , Camundongos , Gravidez , Animais Recém-Nascidos , Recém-Nascido Prematuro , Lactação , Timo/imunologia , Neutrófilos/imunologia , Linfócitos T/imunologia
18.
J Dermatol ; 50(7): 856-868, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37020415

RESUMO

The pathogenesis of granulomatous rosacea (GR), the only variant of rosacea, is unclear. To investigate the differences between GR and non-granulomatous rosacea (NGR) in clinical characteristics, histopathological changes and gene expression for the purpose of providing new ideas on the pathogenesis of rosacea. A total of 30 GR and 60 NGR patients were included. Their clinical and histopathological information was collected retrospectively, and the characteristics of immune cell infiltration were investigated by multiple immunohistochemical staining. RNA sequencing and transcriptome analysis were performed on three pairs of skin samples from GR and NGR patients, respectively. Then, the expressions of candidate genes that were potentially associated with granuloma formation were verified by immunohistochemical staining. It was found that GR patients were more prone to the occurrence of rosacea in the forehead, periocular and perioral skin (p = 0.001, p < 0.001, p = 0.001), and presented more severe papules and pustules when compared with NGR patients (p = 0.032). For histopathological features, the inflammatory cells primarily infiltrated around hair follicles in the GR group and around blood vessels in the NGR group. In addition, the neutrophils were richer (p = 0.036) and the expression levels of CD4+ , CD8+ and CD68+ cells were higher (p = 0.047, p < 0.001, p < 0.001) in the GR group than in the NGR group. In addition, the GR group had apparent collagen hyperplasia (p = 0.026). A total of 420 differentially expressed genes (DEGs) were detected, and bioinformatics analysis showed that the DEGs were enriched in neutrophil activation, adaptive immune response and other biological processes. Lastly, the candidate genes related to neutrophil activation and collagen hyperplasia, i.e., Cathepsin S (CTSS), Cathepsin Z (CTSZ) and matrix metalloproteinases 9 (MMP9), were confirmed to be highly expressed in the GR group. The clinical and histopathological features of GR exhibited a very diverse pattern compared with NGR, and the underlying mechanisms may be related to neutrophil activation and collagen hyperplasia.


Assuntos
População do Leste Asiático , Rosácea , Humanos , Hiperplasia/patologia , Neutrófilos/imunologia , Estudos Retrospectivos , Rosácea/etnologia , Rosácea/genética , Rosácea/imunologia , Rosácea/patologia , Pele/patologia
19.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047140

RESUMO

Integrins are a group of heterodimers consisting of α and ß subunits that mediate a variety of physiological activities of immune cells, including cell migration, adhesion, proliferation, survival, and immunotolerance. Multiple types of integrins act differently on the same immune cells, while the same integrin may exert various effects on different immune cells. In the development of cancer, integrins are involved in the regulation of cancer cell proliferation, invasion, migration, and angiogenesis; conversely, integrins promote immune cell aggregation to mediate the elimination of tumors. The important roles of integrins in cancer progression have provided valuable clues for the diagnosis and targeted treatment of cancer. Furthermore, many integrin inhibitors have been investigated in clinical trials to explore effective regimens and reduce side effects. Due to the complexity of the mechanism of integrin-mediated cancer progression, challenges remain in the research and development of cancer immunotherapies (CITs). This review enumerates the effects of integrins on four types of immune cells and the potential mechanisms involved in the progression of cancer, which will provide ideas for more optimal CIT in the future.


Assuntos
Progressão da Doença , Sistema Imunitário , Imunoterapia , Integrinas , Neoplasias , Animais , Humanos , Linfócitos B/imunologia , Células Dendríticas/imunologia , Integrinas/antagonistas & inibidores , Integrinas/metabolismo , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Neutrófilos/imunologia , Linfócitos T/imunologia , Sistema Imunitário/citologia , Sistema Imunitário/imunologia
20.
Life Sci Alliance ; 6(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36622345

RESUMO

Neutrophils are vital in defence against pathogens, but excessive neutrophil activity can lead to tissue damage and promote acute respiratory distress syndrome. COVID-19 is associated with systemic expansion of immature neutrophils, but the functional consequences of this shift to immaturity are not understood. We used flow cytometry to investigate activity and phenotypic diversity of circulating neutrophils in acute and convalescent COVID-19 patients. First, we demonstrate hyperactivation of immature CD10- subpopulations in severe disease, with elevated markers of secondary granule release. Partially activated immature neutrophils were detectable 12 wk post-hospitalisation, indicating long term myeloid dysregulation in convalescent COVID-19 patients. Second, we demonstrate that neutrophils from moderately ill patients down-regulate the chemokine receptor CXCR2, whereas neutrophils from severely ill individuals fail to do so, suggesting an altered ability for organ trafficking and a potential mechanism for induction of disease tolerance. CD10- and CXCR2hi neutrophil subpopulations were enriched in severe disease and may represent prognostic biomarkers for the identification of individuals at high risk of progressing to severe COVID-19.


Assuntos
COVID-19 , Neutrófilos , Receptores de Interleucina-8B , Humanos , COVID-19/imunologia , Citometria de Fluxo , Neutrófilos/imunologia , Receptores de Interleucina-8B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA